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Abstract

Parentage assignment is widely applied to studies on mating systems, population dynamics
and natural selection. However, little is known about the consequence of assignment errors,
especially when some parents are not sampled. We investigated the effects of two types of
error in parentage assignment, failing to assign a true parent (type A) and assigning an
untrue parent (type B), on an estimate of the relative reproductive success (RRS) of two
groups of parents. Employing a mathematical approach, we found that (i) when all parents
are sampled, minimizing either type A or type B error insures the minimum bias on RRS,
and (ii) when a large number of parents is not sampled, type B error substantially biases the
estimated RRS towards one. Interestingly, however, (iii) when all parents were sampled
and both error rates were moderately high, type A error biased the estimated RRS even
more than type B error. We propose new methods to obtain an unbiased estimate of RRS
and the number of offspring whose parents are not sampled (

 

zW

 

z

 

), by correcting the error
effects. Applying them to genotypic data from steelhead trout (

 

Oncorhynchus mykiss

 

), we
illustrated how to estimate and control the assignment errors. In the data, we observed up
to a 30% assignment error and a strong trade-off between the two types of error, depending
on the stringency of the assignment decision criterion. We show that our methods can effi-
ciently estimate an unbiased RRS and 

 

zW

 

z

 

 regardless of assignment method, and how to
maximize the statistical power to detect a difference in reproductive success between groups.
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Introduction

 

Parentage assignment using molecular markers is one of
the most effective approaches to analyse mating systems,
population dynamics and natural selection in recent
molecular ecology (Richardson 

 

et al

 

. 2001; Avise 2004;
Bishop 

 

et al

 

. 2004). Many methods can be used for the
assignment of parents to offspring. These include categorical
or fractional allocation, with exclusion, likelihood and/or
Bayesian methods (Thompson 1975; Devlin 

 

et al

 

. 1988;
Marshall 

 

et al

 

. 1998; Neff 

 

et al

 

. 2001; reviewed in Jones
& Ardren 2003). However, all methods are subject to
assignment errors that can include failing to identify the

true parent when it is present, and assigning offspring to
an untrue parent (Oddou-Muratorio 

 

et al

 

. 2003). Incorrect
assignment decisions result from sampling a finite number
of loci and from genotyping errors, mutation or null alleles
(SanCristobal & Chevalet 1997; Bernatchez & Duchesne
2000; Hoffman & Amos 2005). Failing to sample all potential
parents can also create very high rates of assignment error
that can only be accounted for if one has an accurate
estimate of the number of missing adults (Marshall 

 

et al

 

.
1998; Nielsen 

 

et al

 

. 2001). There has been little discussion of
how best to estimate confidence in individual assignment
decisions (Marshall 

 

et al

 

. 1998; Neff 

 

et al

 

. 2001; Nielsen 

 

et al

 

.
2001; Oddou-Muratorio 

 

et al

 

. 2003), and even less discussion
of the consequences of assignment error for different types
of studies. For example, assignment error could strongly
affect the estimation of quantitative genetic parameters, of
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variance in reproductive success among individuals, or of
selection gradients in wild populations (Morgan & Conner
2001; Kruuk 

 

et al

 

. 2002). One interesting application is the
estimation of relative reproductive success (RRS) of different
groups. Such groups can be geographical populations,
behavioural groups or groups of different life histories. For
example, Nielsen 

 

et al

 

. (2001) showed that male whales
(

 

Megaptera novaeangliae

 

) that escort females dominantly
during the mating season (dominant males) tend to have
higher reproductive success than subdominant males.
They also showed that failing to account for nonsampled
males caused a substantial underestimation of RRS of
dominant males relative to that of subdominant males.

In this study, we investigated the effects of assignment
errors on an estimate of RRS of different groups. A primary
goal of this study is to explicitly lay out the different types
of errors possible when doing parentage assignments, and
to evaluate the effects of assignment errors on an estimate of
the absolute fitness and of RRS of two groups. We employed
a simple mathematical approach that takes nonsampled
parents into consideration. Based on the relationship between
the estimated RRS and assignment error rates, we propose
new methods to obtain an unbiased estimate of RRS and the
number of offspring whose parents are not sampled. Our
approach can be applied regardless of assignment method,
and to RRS estimations for different individuals or groups.
Finally, our methods are applied to a genotype data set from
steelhead trout (

 

Oncorhynchus mykiss

 

) to show how one can
empirically estimate the assignment error rates. This appli-
cation illustrates how high the assignment error rates can be
in real data, and how strongly different criteria for assignment
decisions influence the trade-off between the two assign-
ment error rates. We discuss how broadly our approach can
be applied, how best one can estimate an unbiased RRS and

 

zW

 

z

 

, and how to maximize the statistical power to detect a
difference in reproductive success between groups.

 

Materials and methods

 

Definitions of assignment errors in a parentage 
assignment

 

For the general case in which there are assignment errors
and not all potential parents have been sampled, there are

five ways to make a correct or incorrect assignment decision
(Table 1). Correct decisions include assigning the true parent
when it is present, and assigning no parent when the true
parent is absent. Assignment errors fall into two categories.
First, one can fail to assign the correct parent when it is
present in the sample. Second, one can assign the offspring
to an untrue parent, which can occur when the true parent
is absent or when the true parent is present but failed to be
assigned. We refer to the first type of error as ‘type A’ error
(fail to assign a true parent), and the second as ‘type B’
error (assign an untrue parent). Note that these errors are
different from type I (

 

α

 

) and type II errors (

 

β

 

) in parentage
assignment tests (see Results and Appendix I for details).

 

Biological materials and genetic markers

 

Scale samples from steelhead trout were collected at
Powerdale Dam in the Hood River, Oregon, in 1993–2000.
A total of 502 offspring samples that was born in 1994 and
381 parental samples that returned to the dam in 1993–1994
were used in this study. Genotypes in eight microsatellite
loci (Omy1001, Omy1011, Omy1191, Omy77, One108, One2,
Ssa407 and Str2, Morris 

 

et al

 

. 1996; Cairney 

 

et al

 

. 2000;
Nichols 

 

et al

 

. 2003; Spies 

 

et al

 

. 2005) were identified for
these samples. We followed a standard Chelex protocol
for DNA extraction and amplification (see Nelson 

 

et al

 

.
1998), with minor modifications (50–55 

 

°

 

C of annealing
temperature). The genotype scoring was done on the ABI
3100 Capillary Electrophoresis system (Applied Biosystems).
Ambiguous scorings for one mismatch between parental
and offspring samples were checked twice and either
corrected or re-analysed to minimize scoring errors. The
average number of alleles and the average heterozygosity
among the loci were 32.5 and 0.915, respectively.

We employed the exclusion method for simplicity. Parent–
offspring pairs with the minimum of six loci comparisons
were accepted, and the total exclusion probability was
> 0.9999. The parentage assignments were done using
the 

 

cervus

 

 program version 2.0 (Marshall 

 

et al

 

. 1998)
allowing 0–2 mismatch loci. In the few cases that more than
one candidate parent shared the same minimum number
of mismatch to an offspring, a parent with the highest LOD
score was assigned. All the samples above were used to
estimate the allele frequencies in the population.

Table 1 Types of correct and incorrect decisions in a parentage assignment
 

 

Parent in a data set Assignment Decision Type of error Rate

Present to a true parent correct — (1 – a)
failed incorrect A a(1 – b)
to an untrue parent incorrect A∩B ab

Absent failed correct — (1 – b)
to an untrue parent incorrect B b
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Results

 

Observed RRS when all parents are sampled

 

Consider two categories (groups) of samples, X and Y. We
wish to know the RRS of the two groups, 

 

W

 

x

 

/

 

W

 

y

 

, where 

 

W

 

x

 

and 

 

W

 

y

 

 are the mean (absolute) fitness of individuals in
each group. Thus, RRS = 1.0 means equal fitness for the
two groups. Assume that we have 

 

x

 

 and 

 

y

 

 potential parents
in each group, and that all parents of the sampled offspring
are sampled. The total number of offspring produced by
group X and Y are 

 

xW

 

x

 

 and 

 

yW

 

y

 

, respectively. If there is no
type A or type B error, we will correctly assign all the 

 

xW

 

x

 

and 

 

yW

 

y

 

 offspring to each group. If we have type A error
at the rate of 

 

a

 

 (0 = 

 

a

 

 = 1) but no type B error, we will assign
offspring only at a rate of (1 – 

 

a

 

) from each group and a total
of 

 

a

 

 (

 

xW

 

x

 

 + 

 

yW

 

y

 

) offspring will remain unassigned. The
observed RRS of the two groups, 

 

W

 

x

 

/

 

W

 

y

 

, holds 

 

W

 

x

 

/

 

W

 

y

 

 

 

=

 

W

 

x

 

(1 

 

−

 

 

 

a

 

)/

 

W

 

y

 

(1 

 

−

 

 

 

a

 

) 

 

=

 

  

 

W

 

x

 

/

 

W

 

y

 

. Thus, although type A error
reduces the expected absolute fitness of each group, it does
not bias the observed RRS unless type A error rate differs
between the groups.

Now consider type B error at a rate of 

 

b

 

 (0 = 

 

b

 

 = 1). Here,

 

b

 

 is the rate that an offspring, which is not assigned to its
true parent, is assigned to an untrue parent. All through the
current study, we assume (

 

x + y

 

) >> 1 and the same genetic
composition for different groups. The former assumption
is for a randomly chosen parent being an untrue parent,
and for the ratio of the estimates (

 

W

 

x

 

/

 

W

 

y

 

) approximately
being the expectation of RRS. The latter is for an untrue
parent being chosen in proportion to the size of each group
[

 

x

 

/(

 

x + y

 

) in group X and 

 

y

 

/(

 

x + y

 

) in group Y]. Because we
have 

 

a

 

(

 

xW

 

x

 

 + 

 

yW

 

y

 

) unassigned offspring now, the total
numbers of offspring assigned to group X and Y are given by

(eqn 1)

and

(eqn 2)

respectively, and the expectation of RRS, 

 

E

 

{

 

W

 

x

 

/

 

W

 

y

 

}, becomes

(eqn 3)

Because (

 

xW

 

x

 

 + 

 

yW

 

y

 

) is the total number of offspring,

 

N

 

offspring

 

, and (

 

x

 

 + 

 

y

 

) is the number of parents, 

 

N

 

parent

 

, and
because the average fitness of the two groups, 

 

„

 

, is given
by (

 

N

 

offspring

 

/

 

N

 

parent

 

), equation 3 can also be written as

(eqn 4)

This equation shows that the observed RRS is biased
towards one only when both types of error rate are high.
However, type A error affects the observed RRS more than
type B error because type A error not only increases the
contribution of the error term (

 

„

 

ab

 

) in equation 4, but
because it also decreases the contribution of the actual
absolute fitness via the term (1 – 

 

a

 

). Figure 1 represents
how the expectation of RRS is skewed by the two types of
error when 

 

W

 

x

 

/

 

W

 

y

 

 = 10.0 and 

 

x

 

 = 

 

y

 

. For example, RRS
becomes 6.27 when 

 

a

 

 = 0.3 and 

 

b

 

 = 0.3, but becomes 9.85
and 9.79 when 

 

a

 

 or 

 

b

 

 is reduced to 1%, respectively
[(

 

a

 

 = 0.01, 

 

b

 

 = 0.3) and (a = 0.3, b = 0.01)]. Thus, minimizing
either type A or type B error insures the minimum bias on
an estimation of RRS.
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Fig. 1 Relationship between expected RRS and assignment error
rates when all parents are sampled (Wx/Wy = 10.0). All the plots
are calculated from equation 4, assuming the same number of
parents for two groups (x = y). (a) Expected RRS as a function of
type A error rate (b) that of type B error rate. Type B and type A
error rates were fixed as 0, 0.1, 0.3 and 0.5 in (a) and (b),
respectively.
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Observed RRS when some parents are not sampled

In the above example, all parents were sampled. Now
consider a third group, Z, of nonsampled parents. Indi-
viduals in this group can be nonsampled members of
groups X and Y, or belong to a completely nonsampled
third group that shares the same genetic composition. The
z individuals in this group contribute zWz offspring to the
total sample of offspring, where Wz is the mean fitness in
group Z. Now, x and y are the numbers of sampled potential
parents in groups X and Y, and Nparent (= x + y) is the
number of sampled parents. The total number of offspring
is given by

Noffspring = xWx + yWy + zWz. (eqn 5)

Again, assuming group Z has the same genetic composition
to the others, b of all offspring in group Z will be randomly
assigned to untrue parents in groups X and Y. The estimates
of the absolute fitness of groups X and Y are

(eqn 6)

and

(eqn 7)

respectively, and the expectation of the observed RRS
becomes

(eqn 8)

Note that equation 3 is simply a case of zWz = 0 in equation
8. As in equation 3, equation 8 shows that the observed
RRS is biased towards one by these errors, and that the
impact of type A error on the RRS is limited when the
type B error rate is small. However, unlike before, the effect
of type B error cannot be ignored when zWz is large, even
if the type A error rate is small. When a = 0, equation 8
becomes

(eqn 9)

This equation shows that the bias cannot be controlled by
reducing type A error, and that the observed RRS will be
substantially biased when the number of offspring from
group Z is large, and when a high portion of them are
incorrectly assigned to untrue parents relative to the total
number of sampled parents [i.e. zWzb/(x + y) ∼Wx or ∼Wy]
owing to type B error. Figure 2 illustrates the effects of
the assignment errors on the estimation of RRS. A case that
all parents are sampled (Fig. 2a) was compared with a case
that only half of the parents are sampled (Fig. 2b), assuming
x = y, Wx = 1.0 and Wy = 0.1 (Wx/Wy = 10.0). The general
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Fig. 2 Expected RRS with assignment errors
when all parents are sampled (a) and when
only half of the parents are sampled (b). The
logarithm of the expected RRS was drawn
with type A and type B error rates in 3D
plot (left) and its contour plot (right). These
values were calculated from equation 8,
assuming Wx/Wy = 10.0 (Wx = 1.0, Wy = 0.1)
and x = y. zWz = 0 and zWz = (xWx + yWy)
were assumed for (a) and (b), respectively.
Lighter colour in the contour plots indicates
smaller deviation of the estimate from the
true RRS (= 10.0) and the darker colour
indicates the larger deviation towards one.
Note the effects of the assignment errors
in the contour plots are exactly the same
between Wx/Wy = 10.0 and its reciprocal
(Wx/Wy = 0.1). mathematica version 4.1
program was used for these calculations.
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pattern of the effects of assignment errors on RRS is similar
between these cases, but the missing parents from the data
strongly influence the estimation of RRS when the type A
error rate is small. This influence became stronger as the
proportion of missing parents increased (data not shown).
Note that the estimates of RRS for Wx/Wy < 1.0 can be
obtained simply by the reciprocal of those for Wx/Wy > 1.0
(Wy/Wx), and that the effects of assignment errors on RRS
for Wx/Wy (the contour plots in Fig. 2) are exactly the same
as for Wy/Wx.

Because the number of offspring assigned, Nassigned, is

(eqn 10)

and because Nparent = x + y, equation 8 can also be written
as

(eqn 11)

(Noffspring – Nassigned)/Nparent is the ratio of the number of
offspring that could not be assigned to the number of
parents sampled. (Noffspring – Nassigned) simply reflects type
A error when all the parents are sampled, while it reflects
both type A error and offspring from nonsampled parents
when some parents are missing from the dataset.

Table 2 represents examples of the estimate of RRS by
equation 11, in the case of Wx/Wy = 10.0. We used para-
meters as follows; {Wx, Wy} = {1.0, 0.1} (Case A-) or {10.0, 1.0}
(Case B-), (Noffspring – Nassigned)/Nparent = {0.1, 1.0, 3.0}, a = {0,
0.1, 0.2, 0.3, 0.5, 0.9}, b = {0, 0.1, 0.2, 0.3, 0.5, 0.9}. The para-
meter sets (Noffspring – Nassigned)/Nparent = {0.1, 1.0, 3.0} are cor-
responding to Nassigned = {490, 400, 200}, respectively, when
Noffspring = 500 and Nparent = 100, but the absolute values do
not influence the results as long as (Noffspring – Nassigned)/
Nparent is constant. Again, Table 2 shows that type B error
influences the estimate of RRS more than type A error
when some parents are not sampled. In addition, Table 2
illustrates the strong dependencies of the estimated RRS
on the ratio of nonassigned offspring to sampled parents
(Noffspring – Nassigned)/Nparent, and on the absolute fitness of
each group (Case A- and B-).

Unbiased estimation of RRS by correcting the error effects

Based on equations 6 and 7, an unbiased RRS can be
obtained by

(eqn 12)

In many cases, we do not know the number of missing
parents (z) and the number of offspring produced by them
(zWz). However, as we did for equation 11 above, equation
6 can also be written as

(eqn 13)

Note that Noffspring, Nassigned and Nparent are number of
offspring sampled, number of offspring assigned to a
parent, and number of parents sampled, respectively, and
that all these values should be available when a parentage
assignment has been done. We can use equation 13 to
obtain an unbiased estimate of absolute fitness of one
group (or of an individual when x = 1) if estimates of type
A and type B error rates are available. In the same way, the
unbiased estimation of RRS is given by

(eqn 14)

Thus, we can estimate an unbiased RRS by equation 14
if an estimate of the type B error rate is available. How
to obtain the estimate of the error rates is discussed
below.

Number of offspring whose parents are not sampled

In some cases, the proportion of missing parents or of
offspring whose parent is missing is of particular interest.
Based on estimates of a and b, we can estimate the number
of offspring whose parents are not sampled (zWz) by
equation

(eqn 15)

which was obtained from equations 5 and 10. The number
of missing parents (z), on the other hand, cannot be obtained
unless absolute fitness of them (Wz) is known.

Estimating type A and type B error rates

To estimate an unbiased RRS and zWz, one needs to obtain
the type A and type B error rates. The simplest way to obtain
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Table 2 Expected RRS when some parents are not sampled
 

 

 

 

 

 

 

A-1: Wx = 1.0, Wy = 0.1, [Noffspring – Nassigned]/Nparent = 0.1

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 9.10 9.01 8.90 8.77 8.36 5.26
0.2 8.20 8.04 7.86 7.63 7.00 3.57
0.3 7.30 7.10 6.86 6.58 5.85 2.70
0.5 5.50 5.26 5.00 4.71 4.00 1.82
0.9 1.90 1.82 1.73 1.65 1.47 1.10

A-2: Wx = 1.0, Wy = 0.1, [Noffspring – Nassigned]/Nparent = 1.0

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 5.26 5.03 4.77 4.48 3.79 1.74
0.2 3.57 3.38 3.18 2.97 2.50 1.35
0.3 2.70 2.56 2.42 2.26 1.94 1.21
0.5 1.82 1.74 1.67 1.59 1.43 1.09
0.9 1.10 1.09 1.08 1.07 1.05 1.01

A-3: Wx = 1.0, Wy = 0.1, [Noffspring – Nassigned]/Nparent = 3.0

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 3.08 2.91 2.74 2.56 2.17 1.26
0.2 2.06 1.96 1.87 1.77 1.56 1.12
0.3 1.65 1.59 1.53 1.46 1.34 1.07
0.5 1.29 1.26 1.23 1.21 1.15 1.03
0.9 1.03 1.03 1.03 1.02 1.02 1.00

B-1: Wx = 10.0, Wy = 1.0, [Noffspring – Nassigned]/Nparent = 0.1

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 9.90 9.89 9.88 9.86 9.80 9.10
0.2 9.78 9.76 9.73 9.69 9.57 8.20
0.3 9.63 9.59 9.54 9.48 9.29 7.30
0.5 9.18 9.10 9.00 8.88 8.50 5.50
0.9 5.74 5.50 5.24 4.94 4.21 1.90

B-2: Wx = 10.0, Wy = 1.0, [Noffspring – Nassigned]/Nparent = 1.0

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 9.10 9.01 8.90 8.77 8.36 5.26
0.2 8.20 8.04 7.86 7.63 7.00 3.57
0.3 7.30 7.10 6.86 6.58 5.85 2.70
0.5 5.50 5.26 5.00 4.71 4.00 1.82
0.9 1.90 1.81 1.73 1.65 1.47 1.10

B-3: Wx = 10.0, Wy = 1.0, [Noffspring – Nassigned]/Nparent = 3.0

b\a 0 0.1 0.2 0.3 0.5 0.9

0 10.0 10.0 10.0 10.0 10.0 10.0
0.1 7.75 7.57 7.35 7.10 6.40 3.08
0.2 6.14 5.91 5.65 5.34 4.60 2.06
0.3 4.94 4.71 4.45 4.17 3.52 1.65
0.5 3.25 3.08 2.89 2.70 2.29 1.29
0.9 1.32 1.29 1.26 1.23 1.16 1.03

In all the cases above, Wx/Wy = 10.0 was assumed and the expected RRS was calculated by equation 11.
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them is an empirical method, if independent information
on parentage is available. In that case, error rate a can be
estimated by matching offspring to a sample that contains
true parents, and b can be estimated by matching offspring
to a sample that contains no true parents. We demonstrate
it in an application to the data set of steelhead trout below.
If independent parentage information is not available, one
can use computer simulations to estimate a and b. For
example, one of the most common parentage assignment
programs, cervus (Marshall et al. 1998), provides a
simulation function that can be used for the estimation of
a and b. Their simulation chooses the value of a test statistic
that controls the rate of ‘type I’ error, which is the
proportion of incorrectly assigned offspring among all the
assigned offspring. Thus, they test the null hypothesis that
a candidate parent is not the parent of an offspring, and
make an assignment when the null hypothesis is rejected.
Type II error rate would be the rate of incorrect decisions
among all unassigned offspring. Type I and II errors are
not the same as type A and type B errors, but we can obtain
the latter error rates from the former rates by simple
equations (Appendix I). This conversion can be used with
any other parentage assignment method for which type I
and II errors can be estimated (e.g. Nielsen et al. 2001).
Because the cervus program provides so called ‘success
rate’, Passigned = (Nassigned/Noffspring), instead of type II error
rate, we also obtained an equation to estimate type A and
type B error rates from the type I error rates and Passigned in
Appendix I.

Application to the sample of steelhead trout

Here we use samples of wild and hatchery steelhead trout
to illustrate how to estimate the type A and type B error
rates empirically, and how two types of error rates change
depending on the decision criterion used in a parentage
assignment. We also demonstrate the estimation of the
number of offspring whose parents were not sampled,
based on the different criteria.

Parentage assignments were made using exclusion. In
order to demonstrate the effects of the stringency of the
assignment decision criterion on type A and B error rates,
we used three levels of stringency: 0, 1 or 2 mismatching
loci allowed (see Materials and methods for details).

To estimate the type A error rate, a total of 279 (clipped)
steelhead, which were born in a hatchery in 1994, were
matched against 381 potential parents returned in 1993–
1994. Because we knew that we had all the true parents (27
male and 26 female broodstocks) of these offspring in the
samples, and because we knew all the mating crosses of the
broodstocks made in the hatchery in 1994, we could obtain
the proportion of incorrect assignment when all true
parents are present in the data (type A error rate). To estimate
the type B error rate, the same offspring were matched
against the same parent data set excluding either male or
female brood stocks, so that all the assignments made were
incorrect (type B error). Note that hatchery and wild
parents would share similar genetic compositions because
hatchery broodstocks were randomly selected from the
wild population in the same year. Table 3 shows the results
of these estimations. Type A and type B errors were estim-
ated as 21.1% and 1.4%, respectively, when no mismatch
was allowed, but were reversed to 1.4% and 30.5%, respect-
ively, when up to two mismatches were allowed. These
results show the trade-off between type A and type B
errors, obviously controlled by the stringency of the
assignment decision criterion used to make a match.

Next, we matched a total of 502 (clipped and unclipped)
offspring, which were either hatchery or wild-born steel-
head born in 1994, against all the available parental sam-
ples. We then used the estimates of a and b obtained above
to estimate the number of offspring of missing parents in
this sample (zWz). Table 3 shows that the number of off-
spring assigned to parents increased from 284 to 370 as the
decision criterion was relaxed from 0 to 2 mismatches.
However, the estimate of zWz was relatively stable (rang-
ing from 145.1 to 185.4, or 29–37% of offspring). Because we
obtained these estimates by assigning both parents (mother

Table 3 Estimates of the type A, type B errors and number of offspring from missing parents in samples of steelhead trout
 

Offspring 
Parents

Hatchery (Noffspring = 279) 
true and untrue parents

Hatchery (Noffspring = 279) 
untrue parents only

Wild and Hatchery (Noffspring = 502) 
all available 

Decision criteria Nassigned å Nassigned b åb Nassigned zWz

0 mismatch 220 0.211 3 0.014 0.00296 284 145.1
≤ 1 mismatch 270 0.032 18 0.065 0.00208 347 154.5
≤ 2 mismatches 275 0.014 85 0.305 0.00427 370 185.4

Type A error rate was estimated by matching the hatchery-born offspring to all the potential parents, including all the true parents 
(broodstocks). Type B error rate was estimated by matching the same hatchery-born offspring to the wild samples that cannot be their 
parents. The estimated number of offspring from missing parents (zWz) was calculated from equation 15. Incorrect assignments between 
one wild-born mother (#1994–0435) and one hatchery-born mother (#1994–0246) were ignored in this analysis, because these fishes shared 
identical genotypes.
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and father) to offspring, this result indicates that only 63–
71% of offspring had both parents sampled in our data set,
and that the rest of the offspring had either one or both
parents that were not sampled.

The estimation of zWz provides a basis for choosing an
appropriate criterion for estimating RRS. If zWz is close to
zero, a criterion with the smallest a and ab will provide the
best estimate of RRS (equation 3). However, in the case of
steelhead trout, the large values for the estimate of zWz
suggest that we should choose more stringent criterion to
reduce the type B error rate for a less biased estimate of RRS.

Discussion

Relationship between observed RRS and 
assignment errors

We showed that minimizing either type A or type B error
will insure the minimum bias on an estimate of RRS when
all parents are sampled. It may be surprising that type A
error has a larger effect on the observed RRS than type B
error in this case (Fig. 1). This results because type B error
can be effective only when assignment to the true parents
failed, which corresponds to type A error. On the other
hand, when a large portion of parents is not sampled, the
impact of type B error on the observed RRS becomes large
because all the offspring who have no parent in the data set
are subject to the type B error (Fig. 2 and Table 2). Nielsen
et al. (2001) noted the same phenomenon by showing
how ignoring missing parents causes a high proportion of
incorrect assignments. Our study provided an explicit
explanation for this phenomenon (i.e. high type B error
caused by missing parents).

All through the examples in this study, we assumed
equal number of parental samples (x = y) and the same
genetic compositions between different groups for sim-
plicity. However, equations in this study are also applic-
able to investigate the cases of unequal parental sample
sizes between groups. Because the error terms in equations
3 and 8 are proportional to (xWx + yWy), the errors influ-
ence the estimate of RRS more when Wx > Wy and x > y,
than when Wx > Wy and x < y. In other words, if total
number of parents and the absolute fitness of two groups
are constant, the RRS is more biased when the proportion
of parental samples from a group with higher fitness is
high, while the bias is limited when that with lower fitness
is high. On the other hand, in a case that two groups have
different genetic compositions, like in different geograph-
ical populations or strays, we need to introduce different
assignment error rates for each group and to formulate
another equation, because assignment errors will not occur
proportionally to the size of groups, and because offspring
will not be matched randomly when error occurs. How-
ever, the effects of assignment errors on an estimate of RRS

may be limited in this case, because offspring from a parent
in one group tend to be assigned to a parent in the same
group if two groups are genetically differentiated. In other
words, we expect better resolution of each genetic marker
for distinguishing two groups in this case.

Efficacy and applicability of the correction methods

In this study, we proposed a new method for unbiased
estimation of RRS. The efficacy of our method can be
illustrated by a categorization of high (group X) and low
(group Y) fecundity groups in our data of steelhead trout.
For example, we could intentionally create a group of 61
male parents with Wx = 1.13 and that of 62 male parents
with Wy = 0.161, using the one-mismatch criterion. The
observed RRS was 7.01. However, using equation 14 and
the estimated type B error rate (6.50%, Table 3), the estimate
of RRS was corrected to 12.26, which was 75% higher than
the observed. This example suggests that our method can
efficiently estimate an unbiased RRS, even when assignment
error rates are relatively high. This fact is extremely important,
because it indicates that we can maximize the number of
samples used, as long as accurate assignment error rates
are obtained. Our correction method must be beneficial
especially for studies based on categorical parentage
assignment methods, because they often suffer from small
number of samples available, to eliminate a large portion
of ambiguous matches in parentage assignment.

If one cannot obtain accurate estimates of assignment
errors, it is still worth remembering that there will be a
trade-off between a and b that is controlled by the strin-
gency of the assignment decision criterion (Table 3). Our
results from the genotypic data of steelhead trout is well
consistent with Oddou-Muratorio et al. (2003), in which
computer simulations and categorical likelihood method
(Marshall et al. 1998) were employed to estimate the assign-
ment error rates in genotypic data from plants. This agree-
ment suggests the generality of our results regardless of
assignment method and of organisms studied. The results
of these studies should dictate whether one should err on
the side of minimizing type A or type B error, depending
on the goals of a study.

Other methods for obtaining unbiased estimates of RRS

The fractional assignment is an alternative method to
the categorical assignment (Smouse & Meagher 1994;
Devlin et al. 1988; Nielsen et al. 2001). In this approach,
reproductive contribution to one offspring is fractionally
allocated to parents based on their likelihood of being
the parent (Devlin et al. 1988). This method was further
developed to estimate RRS of different groups when some
of the parents are not sampled (Nielsen et al. 2001). Note,
however, that the fractional assignment is still subject to
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assignment errors. Assume that one offspring is assigned
to two potential fathers with equal probability. In this case,
we can make only a 50% of correct decision even if one of
the fathers is the true parent. Eventually, 50% of type A
error and 50% of type B error are introduced in the analysis
of this offspring. Assuming genetic similarity between two
groups, the second half will be proportionally allocated to
untrue parents in the two groups on average, and the net
effect of these errors will be the same as that in categorical
methods. In a case that two groups have different genetic
compositions, assignment errors can be minimized if one
directly applies it to groups (not to individuals in the
groups) as Nielsen et al. (2001) did, but further study is
required to formulate and evaluate the error effects in that
case. It is also noteworthy that these methods require
different kinds of estimates in advance, i.e. proportion of
parents sampled in Nielsen et al. (2001) and type B error
rate in our method, to obtain an accurate estimate of RRS.
Obtaining accurate estimates of them will be the key for the
good estimation of RRS for these methods.

The ultimate solution to assignment errors will be reduc-
ing both type A and type B errors at the same time, so that
we can make correct decisions in parentage analyses with-
out reducing the number of samples assigned. For this goal,
the number of loci and alleles to be analysed, and the test
statistic for the parentage assignment have been extens-
ively discussed (SanCristoval & Chevalet 1997; Marshall
et al. 1998; Davies et al. 1999; Bernatchez & Duchesne 2000).
However, recent studies suggest that a few genotyping
errors can influence the accuracy of parentage assignment
quite strongly (Hoffman & Amos 2005). In addition, muta-
tion rate on microsatellite loci is reported to be quite high in
some cases (0.57–1.56%, Brohede et al. 2002), which will also
affect the accuracy of parentage assignment. These studies
indicate that any method for parentage assignment is still
subject to assignment errors at this point, even though large
number of loci with large number of allele can be analysed.

Estimating assignment error rates

Because our methods require an estimate of the assignment
error rate, we obtained it by the simplest empirical method,
as demonstrated with the data from steelhead trout (Table 3).
An alternative method for estimating the assignment error
rates is also provided based on computer simulations
(Appendix I). However, it is noteworthy that the accuracy
of the estimated RRS depends on the accuracy of error
rate estimations, and the values of a and b obtained via
simulation are only as good as the input parameters and
underlying assumptions (e.g. the proportion of parents
sampled, the number of loci genotyped accurately on each
individual, and the rate of genotyping error and mutation).
Thus, empirical estimates of a and b may be preferable if
independent parentage information is available. Indeed,

the good agreement in the estimations of zWz, based on
the estimates of a and b by different stringency criteria
(Table 3), suggests that the empirical estimation of a and b
is reasonably accurate. In mammals, these estimates may be
obtained by mother–offspring relationships observed, and
they can be applied to the estimate of RRS between different
groups of fathers. Developing a more sophisticated method
to obtain an accurate error rate will contribute to obtaining
a better estimate of RRS, and an application of the maximum-
likelihood method (Burczyk et al. 2002 for example) may be
one of the potential approaches to this issue.

Testing the difference in fitness

In this study, we focused on a point estimate of RRS. Along
with obtaining an estimate of RRS, one will often want to
test whether the difference in fitness between groups is
statistically significant. Because distributions of individual
fitness are likely to be highly skewed, it will be necessary to
use permutation tests of significance. Note that a permutation
test of whether the difference in fitness between groups
differs from zero is equivalent to a test of whether the ratio
differs from one (Appendix II). The null hypothesis of the
test is H0; Wx − Wy = 0. From equations 6 and 7, we obtain

(eqn 16)

Therefore, although type B error biases the point estimate
of RRS, it has no effect on the difference in fitness, unless
the rate of type B error differs between groups. On the
other hand, the difference in absolute fitness is linearly
decreased and biased towards zero by type A error. This
occurs because the average number of offspring assigned
to each group is reduced by failure to assign. Note that in
this sense, type A error has the same effect as failing to
sample all the offspring produced by the sampled parents.

Further study is required to address how assignment
errors bias the test of difference in fitness, but the discus-
sion above leads us to predict that the type A error plays an
important role in the power of the test. We can see this
effect by a simple example (Table 4). In this example, we
mimicked the effect of errors by reducing (Wx – Wy) with-
out changing Wx/Wy for type A error, and by reducing
Wx/Wy without changing (Wx – Wy) for type B error. When
we applied them to a permutation test, statistical power
was decreased only by the type A error, but no effect was
observed by the type B error. Note, however, that this
example for type B error is an extreme case of a uniform
distribution of the prior probability for being parent (Neff
et al. 2001), and that the effect of the assignment errors on
the power of test will also depend on this distribution. As
we pointed out, the effect of type A error on significance
testing is the same as that of failing to sample all the off-
spring. The fact that missing parents and missing offspring

W Wx y x yW W a    (   )(   )− = − −1
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can have a large effect on estimates of absolute or relative
fitness, or on tests of difference in group fitness, may not be
widely appreciated.

Conclusion

We have shown that minimizing either type A or type B
error insures the minimum bias on an estimate of the RRS
when all parents are sampled, and that type B error is critical
when many offspring have missing parents from the data.
However, type A error influences the estimate of RRS more
than type B error, when all parents are sampled and both
types of error are moderately high. Type A error also
influenced the power for detecting a statistically significant
difference in fitness. Based on the correction of the error
effects, we proposed new methods to obtain an unbiased
estimate of RRS and number of offspring whose parents are
not sampled. One can apply these methods whenever assign-
ment error rates are obtainable from the same data. Otherwise,
one can minimize the error effects, finding an appropriate
stringency of the assignment decision criterion, depending
on a goal of study. Our methods for unbiased RRS and for
number of offspring whose parents are not sampled will
provide better insights for broad range of studies on
population genetic structures and mating systems in wild
populations, regardless of assignment method employed.
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Appendix I

Obtaining estimates of type A and type B errors from 
estimates of type I and type II errors

One way to estimate a and b without samples of known
parentage is to use the simulated distribution of an
assignment test statistic such as that provided by the
program cervus (Marshall et al. 1998). Their test statistic,
∆, is the difference in LOD scores between the most likely
parent and the second most likely parent. The null
hypothesis in the test is that the most likely parent is not
the true parent of the offspring. Thus, the test controls the
proportion of incorrectly assigned offspring among the
assigned offspring (type I error at the rate α). Type II error,
β, would be the proportion of incorrect decisions among
the unassigned offspring. The simulation in cervus provides
(1 – α) (the ‘confidence level’) and the fraction of offspring
assigned, Passigned = Nassigned/Noffspring (the ‘success rate’),
instead of β. Here we show how to estimate type A and B
error rates from either type I and II error rates or type I
error rate and Passigned.

By definitions,

(eqn 17)

and

(eqn 18)

or

(eqn 19)

When all parents are sampled (zWz = 0), α is simply ab/
(1 – a + ab) and β is one, because all the offspring unassigned
are made by incorrect decision. In this case, from equations
5 and 10 we see that

(eqn 20)

From these equations,

(eqn 21)

and

(eqn 22)

Thus, both a and b can be estimated from α and Passigned.
Now consider nonsampled parents. The proportion of

offspring whose parents were sampled, Poffspring, is defined
as

(eqn 23)

By equations 5 and 23, equations 17 and 19 become

(eqn 24)

and

(eqn 25)

respectively. From these equations, a and b are estimated
by the following equations;

(eqn 26)

and

(eqn 27)

(α ≠ 1, β ≠ 1 and Poffspring ≠ 0, 1). Although Poffspring is usually
not known, one may assume that Poffspring is the same as the
proportion of parents sampled, Pparent, which is an input
parameter of the simulation in the cervus program. In
other words, if you can assume that missing parents have
the same fecundity as sampled parents,

(eqn 28)

Then we can substitute Poffspring with Pparent in equations 26
and 27 to estimate a and b.

The cervus program does not provide a direct estimate
of the type II error rate, but we can estimate a and b using
Passigned (‘success rate’ in cervus) instead of β. Here, by
definition of Passigned,

(eqn 29)

and from equations 5, 10, 23 and 29 we obtain

(eqn 30)

and

(eqn 31)

b is now independent of Poffspring, and can be estimated from
the confidence level (1 – α) and the proportion of offspring
assigned (Passigned). This estimation method is easily applied
to any categorical assignment method and program in
which type I and type II error rates or the proportion of
offspring assigned (Passigned) are available. An empirical
method to estimate a and b is described in the main text.
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Appendix II

Proof of the equal power of the permutation test for 
the difference in the fitness between groups and for the 
RRS test

Here we provide a proof that the power of the permutation
test to detect a statistical significance of the difference in
average absolute fitness between two groups is exactly the
same as of the permutation test to detect a statistically
significant departure of the RRS from one.

Assume the observed difference and relative ratio of two
groups, X and Y, as Dobs and Robs, respectively (Dobs ≥ 0
and Robs ≥ 1). Here we represent those obtained from a per-
mutation (sampling without replacement) as Dper and Rper,
respectively. The hypothesis to be proved here is that
Dobs ≤ Dper when Robs ≤ Rper and Robs ≤ Rper when Dobs ≤ Dper.
From the definitions,

(eqn 32)

(eqn 33)

(eqn 34)

(eqn 35)

where Wx[obs], Wy[obs], Wx[per] and Wy[per] are the average
fitness observed in the group X and Y, and those obtained
for the group X and Y from a permutation, respectively
(Wx[obs], Wy[obs], Wx[per] and Wy[per] = 0). Because the per-
mutation (without replacement) holds the total number
of offspring produced by the two groups,

(eqn 36)

where nx and ny are the number of parent in the group X
and Y, respectively.

First, we prove Dobs ≤ Dper when Robs ≤ Rper. From Robs ≤
Rper, and (33), (35) and (36), we obtain

(eqn 37)

and

(eqn 38)

From (32), (36), (37) and (38), Dobs – Dper becomes

(eqn 39)

Thus Dobs ≤ Dper is true when Robs ≤ Rper.
The proof of Robs ≤ Rper when Dobs ≤ Dper can be obtained

in the same manner. From Dobs ≤ Dper (32), (34) and (36), we
again obtain (37) and (38), and hence Robs – Rper becomes

(eqn 40)

So Robs ≤ Rper is true when Dobs ≤ Dper. In either case, the
equality is obtained only if Wx[obs] = Wy[per] and Wy[obs] =
Wy[per]. These results confirm that Dobs ≤ Dper is true whenever
a permutation results in Robs ≤ Rper and vice versa, and that
a permutation test measuring the proportion of Dobs ≤ Dper
is statistically equivalent to that measuring the proportion
of Robs ≤ Rper. Namely, they have exactly the same power.
Because permutations for testing Robs, occasionally produce
null output because of 0 in the denominator, one should
apply a test of Dobs.
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